

How can we build generalizable policies for real world dynamic tasks?

Dynamical systems in robotics literature have been used to perform dynamic tasks (e.g. **DMPs** [Schaal., 2002])

[Muelling et. al, 2013]

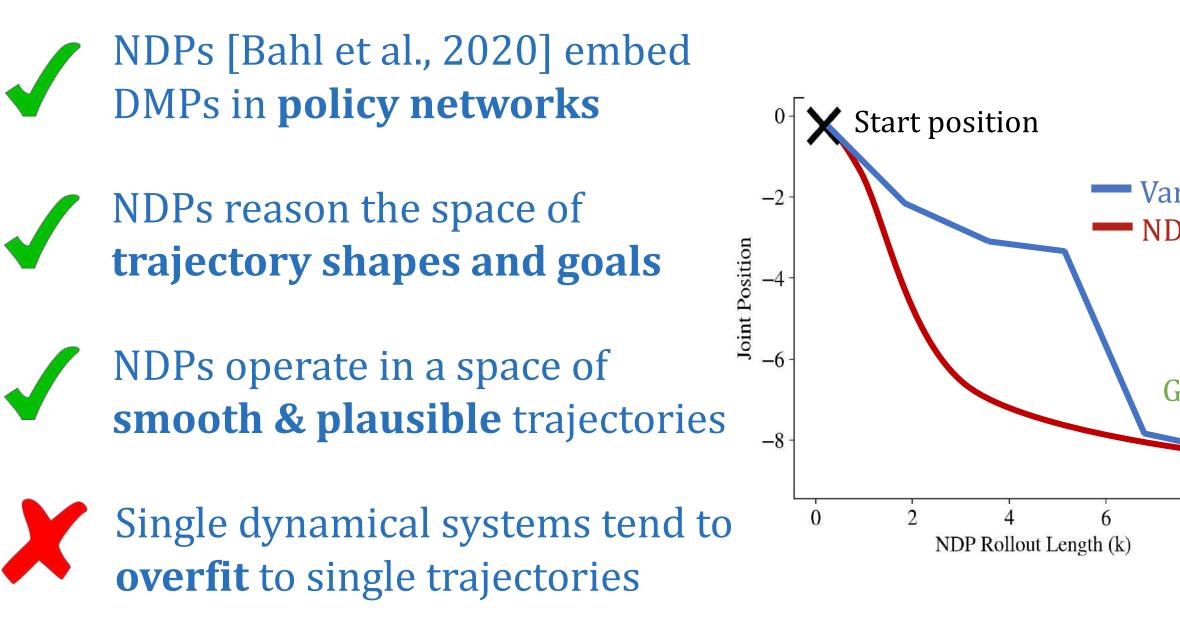
[Steinmetz, 2014]

DMP Structure

$$\ddot{y} = lpha(eta(g-y) - \dot{y}) + f(x)$$

$$f(x,g) = \frac{\sum \psi_i w_i}{\sum \psi_i} x(g - y_0)$$

NDPs

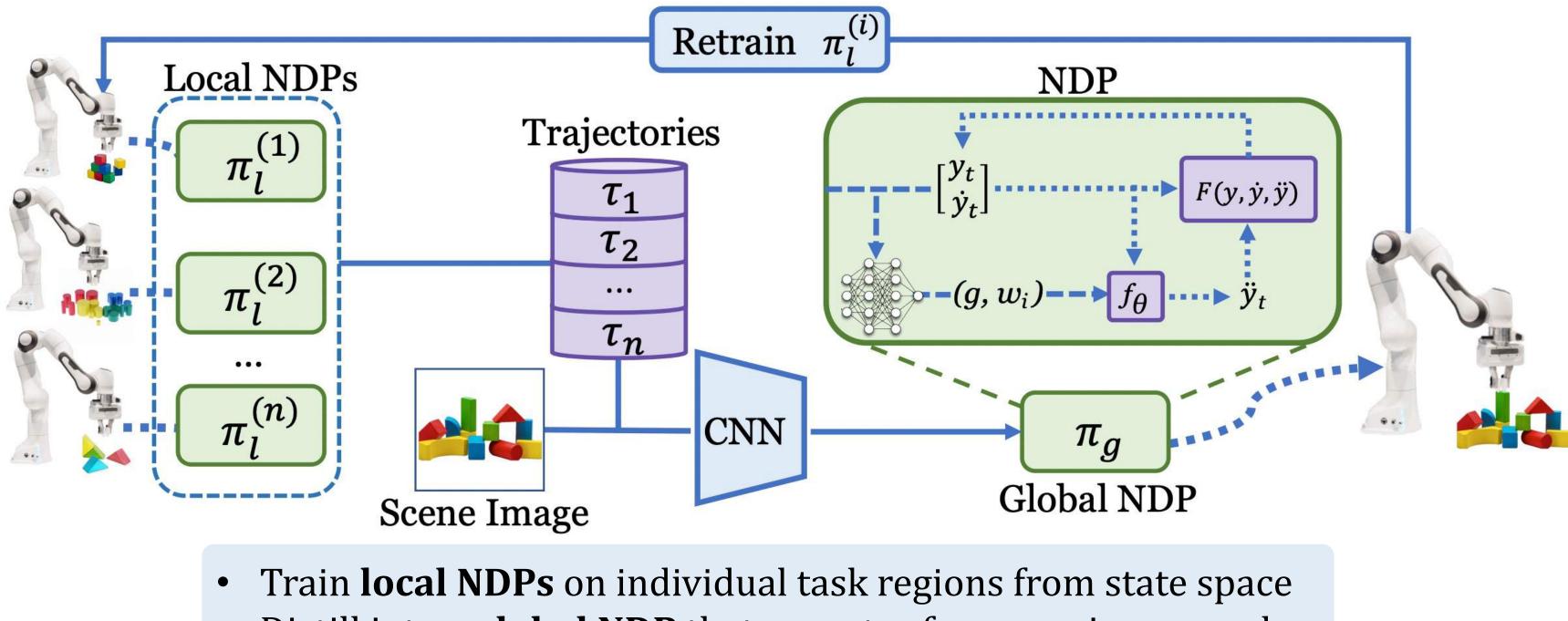


How can we leverage dynamical systems to handle diversity in the task and handle unstructured data?

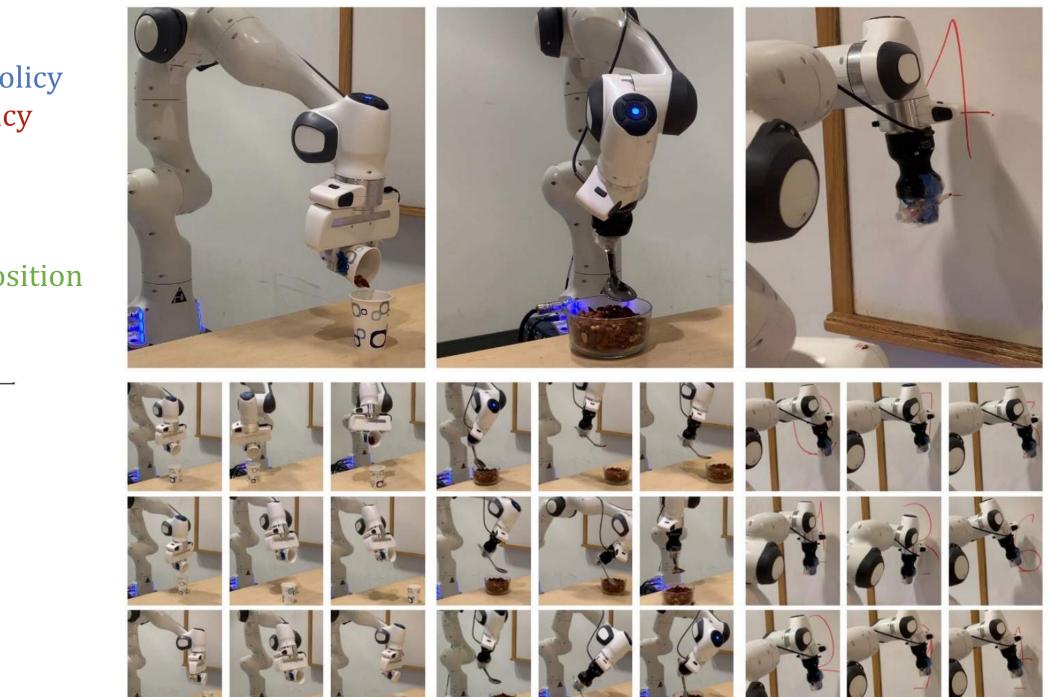
HIERARCHICAL NEURAL DYNAMIC POLICIES

Abhinav Gupta Shikhar Bahl CMU

Local-to-Global Structure: Hierarchical Neural Dynamical Policies (H-NDPs)



- Distill into a **global NDP** that operates from raw images only

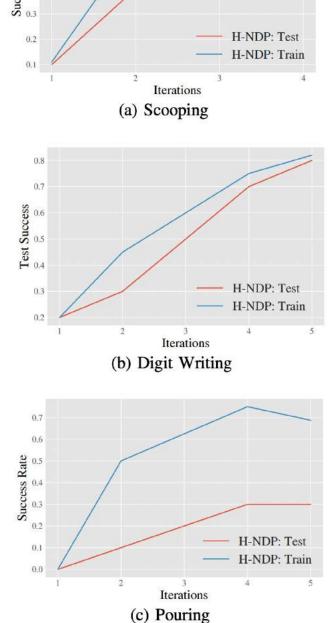


- Vanilla Policy - NDP Policy

Goal position

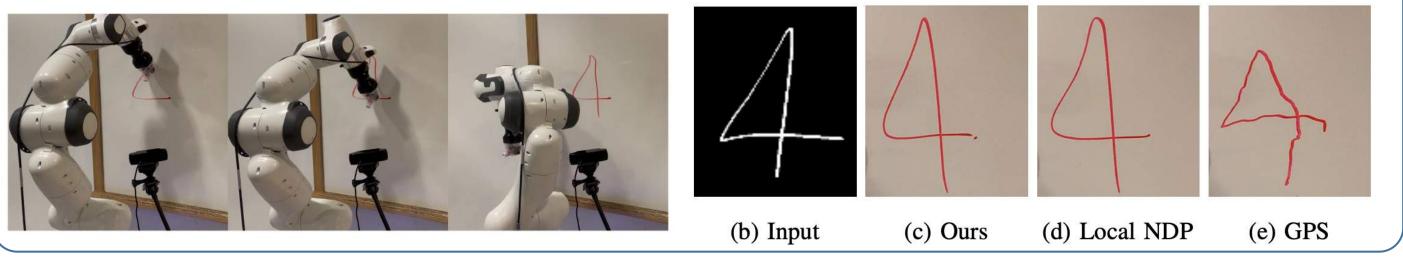
Deepak Pathak

For videos and paper! https://shikharbahl.github.io/hierarchical-ndps/

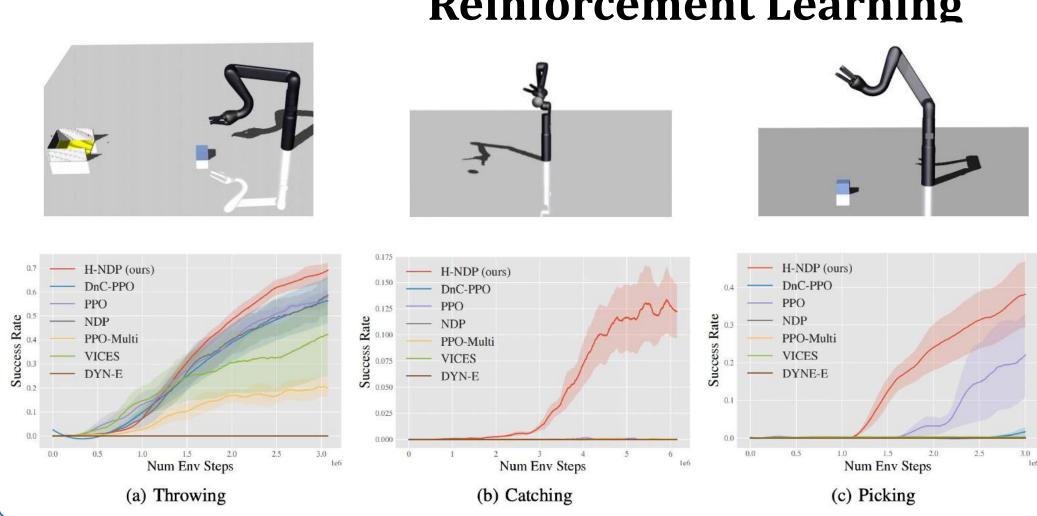


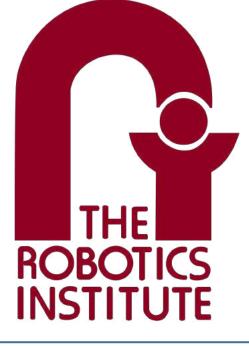
<u>.</u>	#Demos	#Iter	Writing	Scooping	Pouring
No local-to-global structure:					
NDP	1x	1	0.2	0.2	0.0
Vanilla NN	1x	1	0.1	0.0	0.0
No local-to-global structure with 5x Demos:					
NDP	5x	1	0.5	0.3	0.0
Vanilla NN	5x	1	0.1	0.0	0.0
Local-to-global but no iterative refinement:					
GPS	5x	1	0.1	0.0	0.0
H-NDPs (ours)	5x	1	0.4	0.3	0.0
Both local-to-global and iterative refinement:					
GPS	1x	5	0.3	0.0	0.2
H-NDPs (ours)	1x	5	0.8	0.6	0.3

H-NDPs show strong performance against state-of-the-art baselines



H-NDPs can perform *realworld* dynamic tasks from *raw images* only and *generalize* to novel settings.





Learning from Demonstrations

We perform a large scale, systematic evaluation in the real world

Reinforcement Learning

H-NDPs outperform baselines for dynamic tasks with high diversity