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How can we build generalizable
policies for real world dynamic tasks?

Dynamical systems in robotics literature have been used to
perform dynamic tasks (e.g. DMPs [Schaal., 2002])
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How can we leverage dynamical systems to handle
diversity in the task and handle unstructured data?

H-NDPs can perform real-
world dynamic tasks from raw
images only and generalize to
novel settings.
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Learning from Demonstrations
We perform a large scale, systematic evaluation in the real world
#Demos #Iter Writing Scooping Pouring
) No local-to-global structure:
— e T NDP 1x 1 0.2 0.2 0.0
@ Seoens Vanilla NN 1x 1 0.1 0.0 0.0
No local-to-global structure with 5x Demos:
NDP % 1 0.5 0.3 0.0
Vanilla NN 5x 1 0.1 0.0 0.0
’ Local-to-global but no iterative refinement:
trions GPS 5x 1 0.1 0.0 0.0
(b) Digit Writing
H-NDPs (ours) 5x 1 0.4 0.3 0.0
4,: Both local-to-global and iterative refinement:
GPS 1x 5 0.3 0.0 0.2
‘ ~ o FLNDPs (ours)  1x 5 0.8 0.6 0.3
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H-NDPs show strong performance against state-of-the-art baselines
_ (b) Input () Ours  (d)Local NDP  (¢) GPS
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